2005 Vol. 7, No. 12 2309-2311

Catalytic Enantioselective Fluorination and Amination of β -Keto Phosphonates Catalyzed by Chiral Palladium Complexes

Sung Min Kim, Hye Ran Kim, and Dae Young Kim*

Department of Chemistry, Division of Applied Science, Soonchunhyang University, 644 Eupnae-ri, Shinchang, Asan, Chungnam 336-745, Korea

dyoung@sch.ac.kr

Received February 25, 2005

ABSTRACT

The catalytic enantioselective fluorination and amination of β -keto phosphonates catalyzed by chiral palladium complexes is described. Treatment of β -keto phosphonates with *N*-fluorobenzenesulfonimide (NFSI) as electrophilic fluorinating reagent and diethyl azodicarboxylate (DEAD) as electrophilic amination reagent under mild reaction conditions afforded the corresponding α -substituted β -keto phosphonates in moderate to excellent yields with excellent enantiomeric excesses.

Chiral organofluorine compounds containing a fluorine atom bonded directly to a stereogenic center have been utilized in studies of enzyme mechanisms and as intermediates in asymmetric syntheses. The development of effective methodologies for the preparation of new selectively fluorinated, stereochemically defined compounds is critical to further advances of fluorine chemistry. Until now, a number of enantioselective fluorination of β -keto esters have been achieved by reagent-controlled and catalytic enantioselective fluorination. Recently, the efficient example of a catalytic enantioselective fluorination of β -keto esters was reported by Sodeoka et al. They examined the reaction of several

(1) (a) Ramachandran, P. V., Ed. Asymmetric Fluoroorganic Chemistry: Synthesis, Application, and Future Directions; ACS Symposium Series 746; American Chemical Society: Washington, DC, 2000. (b) Enantiocontrolled Synthesis of Fluoro-organic Compounds; Soloshonok, V. A., Eds.; John Wiley & Sons: Chichester, 1999.

substrates with a chiral palladium complex and reported excellent enantioselection (83–94% ee). Although there have been several reports for the asymmetric synthesis of α -fluoro β -keto esters, ^{2e} synthetic methods toward chiral α -fluoro-alkylphosphonates are limited. 4 α -Fluoroalkylphosphonates are better mimics of natural phosphates 5 with matched second

⁽²⁾ For reviews, see: (a) Lal, G. S.; Pez, G. P.; Syvret, R. G. *Chem. Rev.* **1996**, *96*, 1737–1755. (b) Taylor, S. D.; Kotoris, C. C.; Hum, G. *Tetrahedron* **1999**, *55*, 12431–12477. (c) Mikami, K.; Itoh, Y.; Yamanaka, M. *Chem. Rev.* **2004**, *104*, 1–16. (d) Ibrahim, H.; Togni, A. *Chem. Commun.* **2004**, 1147–1155. (e) Ma, J.-A.; Cahard, D. *Chem. Rev.* **2004**, *104*, 6119–6149. (f) France, S.; Weatherwax, A.; Lectka, T. *Eur. J. Org. Chem.* **2005**, 475–479. The first catalytic enantioselective fluorination of β -keto esters was reported by Togni; see: (g) Hintermann, L.; Togni, A. *Angew. Chem., Int. Ed.* **2000**, *39*, 4359–4362.

^{(3) (}a) Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. *J. Am. Chem. Soc.* **2002**, *124*, 14530–14531. (b) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka, M. *Org. Lett.* **2004**, *6*, 1861–1864. (c) Fujii, A.; Hagiwara, E.; Sodeoka, M. *J. Am. Chem. Soc.* **1999**, *121*, 5450–5458

p K_a values.⁶ Recently, reported enzyme kinetic data on the α-fluoroalkylphosphonates suggest that the stereochemistry of the α-carbon does affect enzyme binding.⁷

 α -Amino phosphonic acids and their derivatives are important compounds as surrogates and analogues of α -amino acids. Thus, the enantioselective synthesis of α -amino phosphonates has received considerable attention, and numerous methods using stoichiometric amounts of chiral auxiliaries were reported. However, there are few catalytic enantioselective methods available to access this class of compounds. As part of a research program related to the development of synthetic methods for the enantioselective construction of stereogenic carbon centers, we have recently reported the catalytic enantioselective fluorination of α -cyano acetates promoted by chiral palladium complexes. In this paper, we wish to report the catalytic enantioselective electrophilic fluorination and amination of β -keto phosphonates using palladium complexes $\mathbf{1}^{12}$ and $\mathbf{2}^{.3}$

a: Ar = Ph: (R)-BINAP b: A = 4-methylphenyl: (R)-Tol-BINAP c: Ar = 3,5-dimethylphenyl: (R)-Xylyl-BINAP

To determine suitable reaction conditions for the catalytic enantioselective fluorination of β -keto phosphonates, we first examined electrophilic fluorination of β -keto phosphonate **3a** with *N*-fluorobenzenesulfonimide (NFSI) in the presence of 5 mol % of **1a** in EtOH at room temperature (Table 1).¹³ Catalyst **1a** (X = BF₄, SbF₆) was more effective than the other catalyst **1a** (X = OTf, PF₆) (entries 1–4). Concerning

Table 1. Optimization of the Reaction Conditions

entry	catalyst (X)	solvent	time (h)	yield (%)	ee ^a (%)
1	1a (OTf)	EtOH	20	46	73
2	1a (BF ₄)	EtOH	8	77	89
3	1a (SbF ₆)	EtOH	10	87	89
4	1a (PF ₆)	EtOH	10	24	69
5	1a (SbF ₆)	MeOH	6	96	89
6	1a (SbF ₆)	acetone	13	86	89
7	1a (SbF ₆)	THF	13	92	87
8	1a (SbF ₆)	DMF	13	21	45
9	1a (SbF ₆)	$\mathrm{CH_{2}Cl_{2}}$	15	34	75
10	1a (SbF ₆)	PhMe	15	36	81
11	1a (SbF ₆)	MeCN	20	29	45
12^b	1a (SbF ₆)	MeOH	6	37	75
13^c	1a (SbF ₆)	MeOH	22	47	43
14	$\mathbf{1b} \ (\mathrm{BF_4})$	MeOH	8	96	91
15	$\mathbf{1b} \; (\mathrm{SbF}_6)$	MeOH	9	96	91
16	$\mathbf{1c}$ (BF ₄)	MeOH	8	93	97
17	1c (SbF ₆)	MeOH	9	95	95
18^d	2b (PF ₆)	MeOH	11	64	89
19^d	2c (PF ₆)	MeOH	11	59	95
20^e	$\mathbf{1c}$ (BF ₄)	MeOH	10	64	96
21^f	$\mathbf{1c}$ (BF ₄)	MeOH	33	36	93

 a Enantiomeric excess determined by chiral HPLC using a Chiralpak AD column. b Reaction carried out at $-20\,$ °C. c Reaction carried out using Selectfluor as fluorinating reagent. d Reaction carried out using 2.5 mol % of catalyst. a Reaction carried out using 1.0 mol % of catalyst. f 0.1 mol % of catalyst.

the solvent, the use of alcoholic solvents, acetone, and THF gave the best results, whereas the fluorination in DMF, CH₂-Cl₂, PhMe, and CH₃CN led to lower yields and enantioselectivities (entries 3 and 5–11).

Lowering the temperature to -20 °C with catalyst 1a ($X = SbF_6$) decreased the yields and enantioselectivities (entry 12). NFSI was a more effective fluorinating agent than Selectfluor in this reaction under the same conditions (entries 5 and 13). To improve the enantioselectivity, we examined a series of chiral diphosphine ligands. The substitutions at the meta positions of the aryl group on phosphine were found to be important. When (R)-Xylyl-BINAP (1c, $X = BF_4$) was used, the enantioselectivity was improved to 97% ee (entry 16). Decreasing the catalyst loading to 1.0 and 0.1 mol % showed a significant decrease in yields and slightly decreased the enantioselectivities (entries 16, 20, and 21).

To examine the generality of the catalytic enantioselective fluorination of β -keto phosphonates **3** by using chiral palladium complex **1c** (X = BF₄), we studied the fluorination of cyclic and acyclic β -keto phosphonate derivatives **3b-p**.

2310 Org. Lett., Vol. 7, No. 12, 2005

^{(4) (}a) Glover, N. R.; Tracey, A. S.; *Biochemistry* **1999**, *38*, 5256–5271. (b) Yokomatsu, T.; Yamagishi, T.; Matsumoto, K.; Shibuya, S. *Tetrahedron* **1996**, *52*, 11725–11738. For a synthesis of achiral α -fluoro β -keto phosphonates, see: Kim, D. Y.; Choi, Y. J. *Synth. Commun.* **1998**, *28*, 1491–1498.

^{(5) (}a) Blackburn, G. M. Chem. Ind. (London) 1981, 134–138. (b) McKenna, C. E.; Shen, P. J. Org. Chem. 1981, 46, 4573–4576.

^{(6) (}a) Nieschalk, J.; O'Hagan, D. Chem. Commun. 1995, 719–720. (b) Jakeman, D. L.; Ivory, A. J.; Willamson, M. P.; Blackburn, G. M. J. Med. Chem. 1998, 41, 4439–4452.

^{(7) (}a) Berkowitz, D. B.; Bose, M. *J. Fluorine Chem.* **2001**, *112*, 13–33. (b) Berkowitz, D. B.; Bose, M.; Pfannenstiel, T. J.; Doukov, T. *J. Org. Chem.* **2000**, *65*, 4498–4508.

^{(8) (}a) Kafarski, P.; Lejczak, B. *Phosphorus Sulfur Silicon* **1991**, *63*, 193-215. (b) Seto, H.; Kuzuyama, T. *Nat. Prod. Rep.* **1999**, *16*, 589–596. (c) Kukhar, V. P.; Hudson, H. R. *Aminophosphonic and Aminophosphinic Acids—Chemistry and Biological Activity*; John Wiley and Sons: Chichester, 2000.

⁽⁹⁾ For reviews, see: (a) Dhawan, B.; Redmore, D. *Phosphorous Sulfur* **1987**, *32*, 119–144. (b) Kukhar, V. P.; Soloshonok, V. A.; Solodenko, V. A. *Phosphorous Sulfur Silicon* **1994**, *92*, 239–264. (c) Kolodiazhnyi, O. I. *Tetrahedron: Asymmetry* **1998**, *9*, 1279–1332.

^{(10) (}a) Joly, G. D.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2004**, *126*, 4102–4103. (b) Kobayashi, S.; Kiyohara, H.; Nakamura, Y.; Matsubara, R. *J. Am. Chem. Soc.* **2004**, *126*, 6558–6559. (c) For a review, see: Gröger. H.; Hammer. B. *Chem. Eur. J.* **2000**, *6*, 943–948.

^{(11) (}a) Kim, H. R.; Kim, D. Y. *Tetrahedron Lett.* **2005**, 46, 3115—3117. (b) Kim, D. Y.; Park E. J. *Org. Lett.* **2002**, 4, 545—547. (c) Park, E. J.; Kim, M. H.; Kim, D. Y. *J. Org. Chem.* **2004**, 69, 6897—6899.

^{(12) (}a) Li, K.; Hii, K. K. *Chem. Commun.* **2003**, 1132–1133. (b) Li, K.; Horton, P. N.; Hursthouse, M. B.; Hii, K. K. *J. Organomet. Chem.* **2003**, 665, 250–257. For an aquapalladium complex, see: (c) Shimada, T.; Bajracharya, G. B. Yamamoto, Y. *Eur. J. Org. Chem.* **2005**, 59–62 and references therein.

⁽¹³⁾ Prior to submission of this manuscript, chiral Pd complex and Zn(II)-bis(oxazoline) catalyzed fluorinations were reported: (a) Hamashima, Y.; Suzuki, T.; Shimura, Y.; Shimizu, T.; Umebayashi, N.; Tamura, T.; Sasamoto, N.; Sodeoka, M. *Tetrahedron Lett.* **2005**, *46*, 1447–1450. (b) Bernardi, L.; Jorgensen, K. A. *Chem. Commun.* **2005**, 1324–1325.

Table 2. Catalytic Enantioselective Fluorination of β -Keto Phosphonates

$$R^{1} \stackrel{Q}{\longrightarrow} P(OR^{3})_{2} + NFSI \stackrel{\textbf{cat.1c}}{\longrightarrow} (X = BF_{4}) \\ \stackrel{(5 \text{ mol}\%)}{\longrightarrow} R^{1} \stackrel{Q}{\longrightarrow} P(OR^{3})_{2}$$

$$3a \cdot p$$

$$R^{1} \stackrel{Q}{\longrightarrow} P(OR^{3})_{2}$$

$$R^{2} \stackrel{Q}{\longrightarrow} P(OEt)_{2}$$

$$R^{2} \stackrel{Q}{\longrightarrow} P(OEt)_{2}$$

$$R^{2} \stackrel{Q}{\longrightarrow} P(OEt)_{2}$$

$$R^{2} \stackrel{Q}{\longrightarrow} P(OEt)_{2}$$

$$R^{3} = Et, R^{4} = H \qquad 3f : R^{4} = H \qquad 3f : R^{4} = H \qquad 3f : R^{3} = HR, R^{2} = Me$$

$$3c : R^{3} = i + Pr, R^{4} = H \qquad 3g : R^{4} = 5.6 - (OMe)_{2} \qquad 3i : n = 1$$

$$3i : R^{1} = 4 - OLC_{9}H_{5}, R^{2} = Me$$

$$3i : R^{1} = 4 - OMe \cdot C_{9}H_{5}, R^{2} = Me$$

$$3n : R^{1} = 4 - OMe \cdot C_{9}H_{5}, R^{2} = Me$$

$$3n : R^{1} = CH - CHMe, R^{2} = Me$$

$$3p : R^{1} = CH - CHMe, R^{2} = Me$$

$$3p : R^{1} = CH - CHMe, R^{2} = Me$$

entry	β -keto phosphonate	solvent	time (h)	yield (%)	ee ^a (%)
1	3a	MeOH	8	93	97
2	3b	MeOH	6	89	93
3	3c	MeOH	23	91	95
4	3 d	MeOH	12	84	95
5	3e	MeOH	10	92	95
6	3f	MeOH	3	91	97
7	3g	MeOH	11	86	95
8	3h	MeOH	45	67	95
9	3i	MeOH	86	73	95
10	3j	THF	94	62	91
11	3k	THF	94	68	91
12	31	THF	90	78	87
13	3m	THF	78	61	91
14	3n	THF	86	50	91
15	3o	THF	90	65	87
16	3p	THF	58	79	93

 a Enantiopurity of **4** was determined by HPLC analysis with Chiralcel OD-H (for **4i**), OJ (for **4m**), and Chiralpak AD columns.

As can be seen by the results summarized in Table 2, the corresponding α -fluoro β -keto phosphonates **4** were obtained in moderate to excellent yields and excellent enantioselectivities (87–97% ee). Acyclic β -keto phosphonates **3j**–**p** were successfully employed, and the desired fluorinated products were obtained in moderate to excellent yields and excellent enantioselectivities in THF.

We examined the catalytic enantioselective electrophilic amination¹⁴ of β -keto phosphonate **3f** with diethyl azodicarboxylate (5) using palladium complexes **1** and **2** at room

Table 3. Catalytic Enantioselective Amination of β -Keto Phosphonates

	β -keto					
entry	phosphonate	$\mathrm{cat.}^a$	solvent	time (h)	yield (%)	ee ^b (%)
1	3f	$\mathbf{1a}^c$	THF	18	6a , 62	91
2	3f	2c	THF	17	6a , 94	98
3	3f	2c	MeOH	20	6a , 51	99
4	3f	2c	acetone	20	6a , 92	99
5	3q	2c	acetone	35	6b , 81	99
6	$3\mathbf{r}$	2c	acetone	60	6c , 68	99

^a X = BF₄. ^b Enantiomeric excess determined by chiral HPLC using Chiralhyun-Leu-1 (for **6a**) and Chiralpak AD (for **6b** and **6c**) columns. ^c 5 mol % of catalyst.

temperature (Table 3).¹⁵ In the presence of 5 mol % of catalyst $\mathbf{1a}$ (X = BF₄), the reaction proceeded to afford the α -aminated product $\mathbf{6a}$ after 18 h with 91% ee (Table 3, entry 1). In the case of 2.5 mol % of catalyst $\mathbf{2c}$ (X = BF₄), the enantioselectivity was improved up to 99% ee in acetone (entries 3 and 4).

In summary, we have accomplished the efficient catalytic enantioselective electrophilic α -fluorination of various β -keto phosphonates with excellent enantioselectivity (87–97% ee) with catalyst 1c ($X=BF_4$) and highly enantioselective electrophilic α -amination of β -keto phosphonates with catalyst 2c ($X=BF_4$) up to 99% ee. Studies into substrate variation allowing access to libraries of α -amino phosphonates, and the mechanistic elucidation and scope of these enantioselective α -fluorinations and α -aminations are in progress, and results will be reported in due course.

Acknowledgment. This research was supported by a Korea Research Foundation Grant (KRF-2003-015-C00359).

Supporting Information Available: Typical experimental procedures and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL050413A

Org. Lett., Vol. 7, No. 12, 2005

⁽¹⁴⁾ For catalytic enantioselective amination of β -keto esters, see: Marigo, M.; Juhl, K.; Jorgensen, K. A. *Angew. Chem., Int. Ed.* **2003**, *42*, 1367–1369. (b) Pihko, P. M.; Pohjakallio, A. *Synlett* **2004**, *12*, 2115–2118. (c) Saaby, S.; Bella, M.; Jorgensen, K. A. *J. Am. Chem. Soc.* **2004**, *126*, 8120–8121. (d) Ma, S.; Jioa, N.; Zheng, Z.; Ma. Z.; Lu, Z.; Ye, L.; Deng, Y.; Chen, G. *Org. Lett.* **2004**, *6*, 2193-2196.

⁽¹⁵⁾ After the submission of this paper, Zn(II)-bis(oxazoline)-catalyzed amination of β -keto phosphonates has been reported; see: Bernardi, L.; Zhuang, W.; Jorgensen, K. A. *J. Am. Chem. Soc.* **2005**, *127*, 5772–5773.